STRUCTURAL AND ABSOLUTE CONFIGURATIONAL STUDIES OF STRIATENE,
STRIATOL AND β-MONOCYCLONEROLIDOL, THREE SESQUITERPENOIDS FROM
THE LIVERWORT PTYCHANTHUS STRIATUS (LEHM. ET LINDEMB.) NEES

Reiji TAKEDA,* Reiko MORI, and Yoshio HIROSE
Suntory Institute for Bioorganic Research, Shimamoto-cho, Mishima-gun, Osaka 618

Three new sesquiterpenoids, striatene, striatol and β -monocyclonerolidol, were isolated from the liverwort <u>Ptychanthus striatus</u> (Lehm. et Lindemb.) Nees. Their structures have been established by spectroscopic analysis and chemical transformation.

These compounds are interesting in terms of the evolution of the liverwort from algae.

We have recently reported¹⁾ the structure of "ptychanolide", a new type of sesquiterpenoid isolated from the liverwort <u>Ptychanthus striatus</u>, while Asakawa <u>et al.</u>²⁾ have reported the characterization of mono- and sesquiterpene hydrocarbons, e.g., α -pinene, β -pinene, camphene, α -copaene and calamenene, from the same liverwort.

We report in the following the isolation and structural determination of three new sesquiterpenoids, striatene, striatol and β -monocyclonerolidol, which are interesting in terms of the evolution of the liverwort from algae. Striatene 1 (200 mg) and striatol 2 (70 mg) were isolated from the acetone extract of dry material (100 g) collected in Tokushima Prefecture in August 1979 by column chromatography on SiO₂ using hexane and CH₂Cl₂ followed by preparative GLC, while striatene 1 (200 mg) and β -monocyclonerolidol 3 (70 mg) were isolated from dry material (100 g) collected in Nara Prefecture in November 1979 by a similar procedure.

The physical constants of striatene $\[\]$ and striatol $\[\]$ are as follows: Striatene $\[\]$; $\[\]$; $\[\]$

10.5, 11- H_A), 5.26 (1H, dd, J = 1.6 and 17.5, 11- H_B), 5.41 (1H, m, 3-H) and 5.92 (1H, dd, J = 10.5 and 17.5, 10-H); ¹³C-NMR (25.0 MHz, δ ppm, CDCl₃) four CH₃ (15.7, 19.0, 21.0 and 27.6), four CH₂ (25.4, 27.0, 30.1 and 36.5), one CH (33.2), two C (40.0 and 73.1), one =CH₂ (111.4), two =CH (124.0 and 145.1) and one =C (139.3).

Dehydration of striatol 2 with POCl $_3$ in dry pyridine afforded two trienes, one of which was identified as striatene 1 by GLC, MS and IR. The above spectral data together with this result indicate that striatene and striatol have the same monocyclic carbon skeleton. The presence of a C_6 side chain was indicated by the mass spectrum of 1 which was marked by intense ions at m/z 123 (base peak, M $^+$ - 81) and m/z 81 originating by cleavage of the C-5/C-7 bond. Oxidation of 1 with MCPBA in CH $_2$ Cl $_2$ at 0° gave two monoepoxides 4 and 5 which had a conjugated diene system (UV λ cyclohexane 238 nm, ϵ = 19500). The stereochemistries of oxirane rings in 4 and 5 were determined by 1 H-NMR using shift reagent Eu(fod) $_3$, i.e., two protons of α -epoxide 5 at C-7 underwent a much larger shift than those of β -epoxide 4, thus showing that oxirane ring and side chain in 5 have a cis relation, while those in 4 have a trans relation. In the 1 H-NMR of one of the epoxides, 4, irradiation at 8 5.10 (8-H) collapsed the allylic methylene protons at 2.01 (7-H $_A$) and 2.45 (7-H $_B$) to AB type doublets and the olefinic methyl protons (9-Me) at 1.86 to a sharp peak. These results indicate that the C $_6$ side chain is 3-methyl-pent-1,3-diene.

In the ¹H-NMR of 2, the 6-H (equatorial, t, J = 6.1 Hz) and the 4-Me signals underwent a much larger shift than the 6-Me (axial) and the 5-Me signals upon addition of Eu(fod)₃. In the NOE experiment with 7 (described below) using 360 MHz NMR, a 2.3 % NOE was observed on 6-Me (axial) irradiation upon 5-Me.³⁾ These results indicate that the 6-H and the hydroxy-containing side chain have a cis relation. The coupling pattern of the proton system in striatol 2 involving carbons 1, 2, 3, 4 and 6 was fully clarified by decoupling experiments with Eu(fod)₃. In the NOE experiment with striatene 1, an 11 % NOE was observed on 8-H upon irradiation of 9-Me, i.e., geometry of the 8-ene is Z. These results lead to structures 1 and 2 for striatene and striatol, respectively.

The absolute configurations of χ and χ were determined in the following way. Hydrogenation of mono epoxide χ with Pd/C gave tetrahydro compound χ which was treated with diethylamine and n-BuLi⁴⁾ in ether to give χ ; this alcohol χ was then reacted with p-Br-BzCl in pyridine to yield the corresponding monobenzoate χ . The conformation of this compound was determined to be as depicted in χ by χ H-NMR data including NOE experiments. The fact that 3-H is coupled with χ and χ with J = 5.3 and 10.9 Hz indicates that it is χ axial. An 11.0 % NOE is observed on 12-H χ upon irradiation of 5-Me, i.e., it is equatorial. Harada et al. χ reported that the absolute configuration of cyclic allylic alcohols can be determined nonempirically by the CD exciton chirality method. Application of this method to benzoate χ , χ and χ and χ and χ are χ as shown in χ by the double bond and the 3-OBz group constitute a positive chirality as shown in χ Thus, the absolute configuration of striatene is as shown in structure χ .

The configuration of the <u>tert</u>-OH group in 2 was determined by taking R-(-)-linalool 2 as the reference sample. Namely, it was found that the p-bromobenzoates of striatol and R-(-)-linalool both show negative Cotton effects at 252 nm (in MeOH), $2a \triangle \epsilon = 0.4$ and $2a \triangle \epsilon = 0.5$. This establishes the C-9 configuration in 2 to be R. Recently Gonnella <u>et al.</u>6) have shown that the benzoate method described above for cyclic compound is extensible to acyclic <u>sec-allylic</u> alcohols, namely, that the benzoate of acyclic allylic moiety 10 exhibits a positive CD. The present results including that of linalool show that the method is applicable to <u>tert</u>-OH system 11 as well (because the methyl group is smaller than other alkyl substituents).

β-Monocyclonerolidol 3 exhibits the following constants: $[\alpha]_D^{25} + 3.2^\circ$ (c = 0.66, CHCl₃); $C_{15}H_{26}O$ (M⁺, m/z 222); IR (film) 3400, 1645, 990, 915, 890 cm⁻¹; 1H -NMR (100 MHz, δ ppm, CDCl₃) 0.84 and 0.92 (3H, each, s, gem-dimethyl at C-4), 1.27 (3H, s, 9-Me), 4.53 (1H, br s, 14-H_A), 4.75 (1H, br s, 14-H_B), 5.02 (1H, dd, J = 1.6 and 10.5, 11-H_A), 5.18 (1H, dd, J = 1.6 and 17.5, 11-H_B) and 5.91 (1H, dd, J = 10.5 and 17.5, 10-H). ^{13}C -NMR (25.0 MHz, δ ppm, CDCl₃) three CH₃ (20.4, 26.4 and 27.7), five CH₂ (23.7, 28.5, 32.4, 36.2 and 41.1), one CH (54.5), two C (35.0 and 73.3), two =CH₂ (109.0 and 111.4), one =CH (145.4) and one =C (149.3).

From the above results we assumed that alcohol 3 has a monocyclonerolidol skeleton as shown in structure 3. This assumption was confirmed by partial synthesis from α -ionone in the following way. Hydrogenation of (\pm) - α -ionone 12 with Pd/C in 0.3 N KOH-EtOH gave the hydrogenated mixture from which dihydro-ionone 13 was separated by column chromatography on SiO2. The reaction of 13 with ethylene glycol and p-TsOH gave ketal 14, which was irradiated in ether/10 % phenol with a 450W-Hg lamp⁷⁾ to afford a mixture of 15 and starting material 14; hydrolysis with p-TsOH in THF gave the ketones 16 and 13. The exocyclic isomer 16 which was separated by column chromatography on AgNO3-SiO2 was reacted with vinyl magnesium bromide in dry THF to give racemic alcohol 17. The NMR, IR and MS of compound 17 were identical with those of β -monocyclonerolidol 3.

 $a: H_2$, Pd/C, 0.3N KOH-EtOH

d:p-TsOH, THF

b: Ethyleneglycol, p-TsOH

e: CH₂=CHMgBr, THF

c: 10% Phenol/ether, $h\nu(450W)$

On the basis of distribution of terpenoids, Asakawa and co-workers⁸⁾ have noted that liverwort are closely related to algae. The fact that the skeletal structures of $1 \sim 3$ are identical with α - and β -snyderol, α 0 microcionin, α 10 etc. α 11 which have been found in marine algae and in marine animals feeding on algae, supports the notion that liverworts have evolved from algae.

Acknowledgement: We wish to thank Dr. Jiro Hasegawa of Kyoto University for identification of Ptychanthus striatus and Professor Koji Nakanishi, director of our institute, for many discussions.

References

- 1) R. Takeda, H. Naoki, T. Iwashita and Y. Hirose, Tetrahedron Lett., 22, 5307 (1981).
- 2) Y. Asakawa, C. Suire, M. Toyota, N. Tokunaga, T. Takemoto, S. Hattori and M. Mizutani, J. Hattori Bot. Lab., 46, 77 (1980).
- 3) The present result was confirmed by NOE difference spectrum.
- 4) C.L. Kissel and B. Rickborn, J. Org. Chem., 37, 2060 (1972).
- 5) N. Harada, J. Iwabuchi, Y. Yokota, H. Ueda and K. Nakanishi, J. Am. Chem. Soc., 103, 5590 (1981).
- 6) N.C. Gonnella, K. Nakanishi, V.S. Martin and K.B. Sharpless, ibid., in press.
- 7) P.J. Kropp and H.J. Krauss, ibid., <u>89</u>, 5199 (1967); S.G. Levine and B. Gopalakrishnan, Tetrahedron Lett., 1979, 699.
- 8) Y. Asakawa, N. Tokunaga, M. Toyota, T. Takemoto and C. Suire, J. Hattori Bot. Lab., 45, 395 (1979).
- 9) B.M. Howard and W. Fenical, Tetrahedron Lett., 1976, 41.
- 10) G. Cimino, S.D. Stefano, A. Gueriero and L. Minale, ibid., 1975, 3723.
- G. Cimino, S.D. Stefano, A. Gueriero and L. Minale, ibid., <u>1975</u>, 1417, 1425; R.J. Capon, E.L. Ghisalberti and P.R. Jefferies, Aust. J. Chem., 34, 1775 (1981).

(Received June 24, 1982)